In this essay we will discuss about: 1. Introduction to Volcanic Eruption 2. Effects of Volcanic Eruption 3. Types.

Essay on Volcanic Eruption


1. Essay on the Introduction to Volcanic Eruption:

Explosive eruptions can inject large quantities of dust and gaseous material (such as sulphur dioxide) into the upper atmosphere, where sulphur dioxide is rapidly converted into sulphuric acid aerosols. Whereas volcanic pollution of the lower atmosphere is removed within days by the effects of rainfall and gravity, stratospheric pollution may remain there for several years, gradually spreading to cover much of the globe.

The volcanic pollution results in a substantial reduction in the direct solar beam, largely through scattering by the highly reflective sulphuric acid aerosols. This can amount to tens of per cent. The reduction, is however, compensated for by an increase in diffuse radiation and by the absorption of outgoing terrestrial radiation (the greenhouse effect). Overall, there is a net reduction of 5 to 10% in energy received at the Earth’s surface.

Clearly, this volcanic pollution affects the energy balance of the atmosphere whilst the dust and aerosols remain in the stratosphere. Observational and modelling studies of the likely effect of recent volcanic eruptions suggest that an individual eruption may cause a global cooling of up to 0.3°C, with the effects lasting 1 to 2 years. Such a cooling event has been observed in the global temperature record in the aftermath of the eruption of Mount Pinatubo in June 1991.

The climate forcing associated with individual eruptions is, however, relatively short-lived compared to the time needed to influence the heat storage of the oceans. The temperature anomaly due to a single volcanic event is thus unlikely to persist or lead, through feedback effects, to significant long-term climatic changes.

Major eruptions have been relatively infrequent this century, so the long-term influence has been slight. The possibility that large eruptions might, during historical and pre-historical times, have occurred with greater frequency, generating long-term cooling, cannot, however, be dismissed. In order to investigate this possibility, long, complete and well-dated records of past volcanic activity are needed. One of the earliest and most comprehensive series is the Dust Veil Index (DVI) of Lamb (1970), which includes eruptions from 1500 to 1900.

When combined with series of acidity measurements in ice cores (due to the presence of sulphuric acid aerosols), they can provide valuable indicators of past eruptions. Using these indicators, a statistical association between volcanic activity and global temperatures during the past millennia has been found. Episodes of relatively high volcanic activity (1250 to 1500 and 1550 to 1700) occur within the period known as the Little Ice Age, whilst the Medieval Warm Period (1100 to 1250) can be linked with a period of lower activity.

Bryson (1989) has suggested a link between longer time scale volcanic variations and the climate fluctuations of the Holocene (last 10,000 years). However, whilst empirical information about temperature changes and volcanic eruptions remains limited, this, and other suggested associations discussed above, must again remain speculative.

Volcanic activity has the ability to affect global climate on still longer time scales. Over periods of millions or even tens of millions of years, increased volcanic activity can emit enormous volumes of greenhouse gases, with the potential of substantial global warming. However, the global cooling effects of sulphur dioxide emissions will act to counter the greenhouse warming, and the resultant climate changes remain uncertain. Much will depend upon the nature of volcanic activity. Basaltic outpourings release far less sulphur dioxide and ash, proportionally, than do the more explosive (silicic) eruptions.


2. Essay on the Effects of Volcanic Eruption:

There are many different types of volcanic eruptions and associated activity – phreatic eruptions (steam-generated eruptions), explosive eruption of high-silica lava (e.g., rhyolite), effusive eruption of low-silica lava (e.g., basalt), pyroclastic flows, lahars (debris flow) and carbon dioxide emission. All of these activities can pose a hazard to humans. Earthquakes, hot springs, fumaroles, mud pots and geysers often accompany volcanic activity.

The concentrations of different volcanic gases can vary considerably from one volcano to the next. Water vapour is typically the most abundant volcanic gas, followed by carbon dioxide and sulphur dioxide. Other principal volcanic gases include hydrogen sulfide, hydrogen chloride, and hydrogen fluoride. A large number of minor and trace gases are also found in volcanic emissions, for example hydrogen, carbon monoxide, halocarbons, organic compounds, and volatile metal chlorides.

Large, explosive volcanic eruptions inject water vapour (H2O), carbon dioxide (CO2), sulphur dioxide (SO2), hydrogen chloride (HCl), hydrogen fluoride (HF) and ash (pulverized rock and pumice) into the stratosphere to heights of 16-32 kilometres (10-20 mi) above the Earth’s surface. The most significant impacts from these injections come from the conversion of sulphur dioxide to sulphuric acid (H2SO4), which condenses rapidly in the stratosphere to form fine sulfate aerosols.

The aerosols increase the Earth’s albedo—its reflection of radiation from the Sun back into space – and thus cool the Earth’s lower atmosphere or troposphere; however, they also absorb heat radiated up from the Earth, thereby warming the stratosphere. Several eruptions during the past century have caused a decline in the average temperature at the Earth’s surface of up to half a degree (Fahrenheit scale) for periods of one to three years — sulphur dioxide from the eruption of Huaynaputina probably caused the Russian famine of 1601 – 1603.

One proposed volcanic winter happened c. 70,000 years ago following the super-eruption of Lake Toba on Sumatra Island in Indonesia. According to the Toba catastrophe theory to which some anthropologists and archeologists subscribe, it had global consequences, killing most humans then alive and creating a population bottleneck that affected the genetic inheritance of all humans today.

The 1815 eruption of Mount Tambora created global climate anomalies that became known as the “Year without a summer” because of the effect on North American and European weather. Agricultural crops failed and livestock died in much of the Northern Hemisphere, resulting in one of the worst famines of the 19th century. The freezing winter of 1740-41, which led to widespread famine in northern Europe, may also owe its origins to a volcanic eruption.

It has been suggested that volcanic activity caused or contributed to the End-Ordovician, Permian-Triassic, Late Devonian mass extinctions, and possibly others. The massive eruptive event which formed the Siberian Traps, one of the largest known volcanic events of the last 500 million years of Earth’s geological history, continued for a million years and is considered to be the likely cause of the “Great Dying” about 250 million years ago, which is estimated to have killed 90% of species existing at the time.

The sulfate aerosols also promote complex chemical reactions on their surfaces that alter chlorine and nitrogen chemical species in the stratosphere. This effect, together with increased stratospheric chlorine levels from chlorofluorocarbon pollution, generates chlorine monoxide (CIO), which destroys ozone (O3). As the aerosols grow and coagulate, they settle down into the upper troposphere where they serve as nuclei for cirrus clouds and further modify the Earth’s radiation balance.

Most of the hydrogen chloride (HCl) and hydrogen fluoride (HF) are dissolved in water droplets in the eruption cloud and quickly fall to the ground as acid rain. The injected ash also falls rapidly from the stratosphere; most of it is removed within several days to a few weeks. Finally, explosive volcanic eruptions release the greenhouse gas carbon dioxide and thus provide a deep source of carbon for biogeochemical cycles.

Gas emissions from volcanoes are a natural contributor to acid rain. Volcanic activity releases about 130 to 230 teragrams (145 million to 255 million short tons) of carbon dioxide each year. Volcanic eruptions may inject aerosols into the Earth’s atmosphere. Large injections may cause visual effects such as unusually colourful sunsets and affect global climate mainly by cooling it.

Volcanic eruptions also provide the benefit of adding nutrients to soil through the weathering process of volcanic rocks. These fertile soils assist the growth of plants and various crops. Volcanic eruptions can also create new islands, as the magma cools and solidifies upon contact with the water.

Ash thrown into the air by eruptions can present a hazard to aircraft, especially jet aircraft where the particles can be melted by the high operating temperature. Dangerous encounters in 1982 after the eruption of Galunggung in Indonesia, and 1989 after the eruption of Mount Redoubt in Alaska raised awareness of this phenomenon. Nine Volcanic Ash Advisory Centers were established by the International Civil Aviation Organization to monitor ash clouds and advise pilots accordingly. The 2010 eruption of Eyjafjallajokull caused major disruptions to air travel in Europe.


3. Essay on the Types of Volcanic Eruption:

During a volcanic eruption, lava, tephra (ash, lapilli, solid chunks of rock), and various gases, are expelled from a volcanic vent or fissure.

Several types of volcanic eruptions have been distinguished by volcanologists. These are often named after famous volcanoes where that type of behaviour has been observed. Some volcanoes may exhibit only one characteristic type of eruption during a period of activity, while others may display an entire sequence of types.

1. Magmatic Eruptions:

Magmatic eruptions produce juvenile clasts during explosive decompression from gas release. They range in size from the relatively small fire fountains on Hawaii to > 30 km Ultra Plinian eruption columns, bigger than the eruption that buried Pompeii.

2. Strombolian Eruptions:

Strombolian eruptions are relatively low-level volcanic eruptions, named after the Italian volcano Stromboli, where such eruptions consist of ejection of incandescent cinder, lapilli and lava bombs to altitudes of tens to hundreds of meters. They are small to medium in volume, with sporadic violence.

They are defined as “…Mildly explosive at discrete but fairly regular intervals of seconds to minutes…”

The tephra typically glows red when leaving the vent, but its surface cools and assumes a dark to black colour and may significantly solidify before impact. The tephra accumulates in the vicinity of the vent, forming a cinder cone. Cinder is the most common product, the amount of volcanic ash is typically rather minor. The lava flows are more viscous and therefore shorter and thicker, than the corresponding Hawaiian eruptions; it may or may not be accompanied by production of pyroclastic rock.

Instead the gas coalesces into bubbles, called slugs, that grow large enough to rise through the magma column, bursting near the top due to the decrease in pressure and throwing magma into the air. Each episode thus releases volcanic gases, sometimes as frequently as a few minutes apart. Gas slugs can form as deep as 3 kilometers, making them difficult to predict.

Strombolian eruptive activity can be very long-lasting because the conduit system is not strongly affected by the eruptive activity, so that the eruptive system can repeatedly reset itself. For example, the Paricutin volcano erupted continuously between 1943-1952, Mount Erebus, Antarctica has produced Strombolian eruptions for at least many decades, and Stromboli itself has been producing Strombolian eruptions for several thousand years.

3. Vulcanian Eruption:

Vulcanian eruptions are a type of volcanic eruption characterised by a dense cloud of ash-laden gas exploding from the crater and rising high above the peak. They usually commence with phreatomagmatic eruptions which can be extremely noisy due the rising magma heating water in the ground. This is usually followed by the explosive clearing of the vent and the eruption column is dirty grey to black as old weathered rocks are blasted out of the vent. As the vent clears, further ash clouds become grey-white and creamy in colour, with convolution of the ash similar to those of plinian eruptions.

The tephra is dispersed over a wider area than that from Strombolian eruptions. The pyroclastic rock and the base surge deposits form an ash volcanic cone, while the ash covers a large surrounding area. The eruption ends with a flow of viscous lava. Vulcanian eruptions may throw large metre-size blocks several hundred metres, occasionally up to several kilometres.

The term Vulcanian was first used by Giuseppe Mercalli, witnessing the 1888-1890 eruptions on the island of Vulcano. His description of the eruption style is now used all over the world. Mercalli described vulcanian eruptions as “…Explosions like cannon fire at irregular intervals…”

Their explosive nature is due to increased silica content of the magma. Almost all types of magma can be involved, but magma with about 55% or more silica (basalt-andesite) is most common. Increasing silica levels increase the viscosity of the magma which means increased explosiveness.

Vulcanian eruptions are dangerous to persons within several hundred metres of the vent. One feature of this type of eruption is the “Volcanic bomb.” These can be blocks often 2 to 3 m in dimensions. At Galeras a vulcanian eruption ejected bombs which impacted with several volcanologists who were in the crater and many died or suffered terrible.

4. Pelan Eruption:

Peléan eruptions are a type of volcanic eruption. They can occur when viscous magma, typically of rhyolitic or andesitic type, is involved, and share some similarities with Vulcanian eruptions. The most important characteristics of a Peléan eruption are the presence of a glowing avalanche of hot volcanic ash, a pyroclastic flow. Formation of lava domes is another characteristical feature. Short flows of ash or creation of pumice cones may be observed as well.

The initial phases of eruption are characterised by pyroclastic flows. The tephra deposits have lower volume and range than the corresponding Plinian and Vulcanian eruptions. The viscous magma then forms a steep-sided dome or volcanic spine in the volcano’s vent.

The dome may later collapse, resulting in flows of ash and hot blocks. The eruption cycle is usually completed in few years, but in some cases may continue for decades, like in the case of Santiaguito. The 1902 explosion of Mount Pelée is the first described case of a Peléan eruption, and gave it its name.

Some other examples include the following:

i. The 1948-1951 eruption of Hibok-Hibok;

ii. The 1951 eruption of Mount Lamington, which remains the most detailed observation of this kind;

iii. The 1956 eruption of Bezymianny;

iv. The 1968 eruption of Mayon Volcano;

v. And the 1980 eruption of Mount St. Helens.

5. Hawaiian Eruption:

A Hawaiian eruption is a type of volcanic eruption where lava flows from the vent in a relative gentle, low level eruption, so called because it is characteristic of Hawaiian volcanoes. Typically they are effusive eruptions, with basaltic magmas of low viscosity, low content of gases, and high temperature at the vent. Very little amount of volcanic ash is produced. This type of eruption occurs most often on hotspot volcanoes such as Kilauea, though it can occur near subduction zones (e.g. Medicine Lake Volcano in California, United States.) Another example of Hawaiian eruptions occurred on Surtsey from 1964 to 1967, when molten lava flowed from the crater to the sea.

Hawaiian eruptions may occur along fissure vents, such as during the eruption of Mauna Loa Volcano in 1950, or at a central vent, such as during the 1959 eruption in Kilauea Iki Crater, which created a lava fountain 580 meters (1,900 ft) high and formed a 38 meter cone named Pu’u Pua’i. In fissure-type eruptions, lava spurts from a fissure on the volcano’s rift zone and feeds lava streams that flow downslope. In central-vent eruptions, a fountain of lava can spurt to a height of 300 meters or more (heights of 1600 meters were reported for the 1986 eruption of Mount Mihara on Izu Ôshima, Japan).

Hawaiian eruptions usually start by formation of a crack in the ground from which a curtain of incandescent magma or several closely spaced magma fountains appear. The lava can overflow the fissure and form pahoehoe style of flows. Eruptions from a central cone can form small lightly sloped shield volcanoes, for example the Mauna Loa.

6. Surtseyan Eruption:

A Surtseyan eruption is a type of volcanic eruption that takes place in shallow seas or lakes. It is named after the island of Surtsey off the southern coast of Iceland.

These eruptions are commonly phreatomagmatic eruptions, representing violent explosions caused by rising basaltic or andesitic magma coming into contact with abundant, shallow groundwater or surface water. Tuff rings, pyroclastic cones of primarily ash, are built by explosive disruption of rapidly cooled magma. Other examples of these volcanoes-Capelinhos, Faial Island, Azores; and Taal Volcano, Batangas, Philippines.

Several Specific Characteristics:

i. Physical nature of magma – viscous; basaltic.

ii. Character of explosive activity – violent ejection of solid, warm fragments of new magma; continuous or rhythmic explosions; base surges.

iii. Nature of effusive activity – short, locally pillowed, lava flows; lavas may be rare.

iv. Nature of dominant ejecta – lithic, blocks and ash; often accretionary lapilli; spatter, fusiform bombs and lapilli absent.

v. Structures built around vent – tuff rings

7. Plinian Eruption:

Plinian eruptions, also known as ‘Vesuvian eruptions’, are volcanic eruptions marked by their similarity to the eruption of Mount Vesuvius in AD 79, which killed Pliny the Elder.

Plinian eruptions are marked by columns of gas and volcanic ash extending high into the stratosphere, a high layer of the atmosphere. The key characteristics are ejection of large amount of pumice and very powerful continuous gas blast eruptions. Key characteristics are ejection of large amount of pumice and very powerful continuous gas blast eruptions.

Short eruptions can end in less than a day, but longer events can take several days to months. The longer eruptions begin with production of clouds of volcanic ash, sometimes with pyroclastic flows. The amount of magma erupted can be so large that the top of the volcano may collapse, resulting in a caldera. Fine ash can deposit over large areas. Plinian eruptions are often accompanied by loud noises, such as those generated by Krakatoa.

The lava is usually rhyolitic and rich in silicates. Basaltic lavas are unusual for Plinian eruptions; the most recent example is the 1886 eruption of Mount Tarawera.

8. Phreatomagmatic Eruptions:

Phreatomagmatic eruptions are the result of thermal contraction from chilling on contact with water. The products of phreatomagmatic eruptions are believed to have more regular shard shapes and be finer grained than the products of magmatic eruptions because of the different eruptive mechanism.

There is debate about the exact nature of the eruptive style. Fuel-coolant reactions may be more critical to the explosive nature than thermal contraction. Fuel coolant reactions fragment the material in contact with a coolant by propagating stress waves widening cracks and increasing surface area leading to rapid cooling rates and explosive thermal contraction.

9. Submarine Eruption:

A submarine eruption is a type of volcanic eruption where lava erupts under an ocean. Most of the Earth’s volcanic eruptions are submarine eruptions, but few have been documented because of the difficulty in monitoring submarine volcanoes. Most submarine eruptions occur at mid-ocean ridges and near hotspots.

10. Sub-Glacial Eruption:

A sub-glacial eruption is a volcanic eruption that has occurred under ice, or under a glacier. Sub-glacial eruptions can cause dangerous floods, lahars and create hyaloclastite and pillow lava. Only five of these types of eruptions have been recorded in recent history. Sub-glacial eruptions sometimes form a sub-glacial volcano called a tuya. Tuyas in Iceland are called Table Mountains because of their flat tops. Tuya Butte, in northern British Columbia is an example of a tuya.

A tuya may be recognized by its stratigraphy, which typically consists of a basal layer of pillow basalts overlain by hyaloclastite breccia, tuff, and capped off by a lava flow. The pillow lavas formed first as a result of subaqueous eruptions in glacial melt-water. Once the vent reaches shallower water, eruptions become phreatomagmatic, depositing the hyaloclastite breccia. Once the volcano emerges through the ice, it erupt lava, forming the flat capping layer of a tuya.

The thermodynamics of sub-glacial eruptions are very poorly understood. Rare published studies indicate that plenty of heat is contained in the erupted lava, with 1 unit-volume of magma sufficient to melt about 10 units of ice. However, the rapidity by which ice is melted is unexplained, and in real eruptions the rate is at least an order of magnitude faster than existing predictions.

Antarctica eruption-On January, 2008, the British Antarctic Survey that scientists led by Hugh Corr and David Vaughan, reported (in the journal Nature Geoscience) that 2,200 years ago, a volcano erupted under Antarctica ice sheet (based on airborne survey with radar images).

The biggest eruption in the last 10,000 years, the volcanic ash was found deposited on the ice surface under the Hudson Mountains, close to Pine Island Glacier. The ash covered an area the size of New Hampshire and was probably deposited from a 12 km high ash plume. Researchers have detected a mountainous peak some 100 meters beneath the surface believed to be the top of the tuya associated with this eruption.

11. Phreatic Eruption:

A phreatic eruption, also called a phreatic explosion or ultra-vulcanian eruption occurs when rising magma makes contact with ground or surface water. The extreme temperature of the magma [anywhere from 600 to 1,170°C (1,112 to 2,138°F)] causes near-instantaneous evaporation to steam resulting in an explosion of steam, water, ash, rock, and volcanic bombs. At Mount St. Helens hundreds of steam explosions preceded a 1980 plinian eruption of the volcano. A less intense geothermal event may result in a mud volcano. In 1949, Thomas Jaggar described this type of activity as a steam-blast eruption.

Phreatic eruptions typically include steam and rock fragments; the inclusion of lava is unusual. The temperature of the fragments can range from cold to incandescent. If molten material is included, the term phreatomagmatic may be used. These eruptions occasionally create broad, low-relief craters called maars. Phreatic explosions can be accompanied by carbon dioxide or hydrogen sulfide gas emissions. The former can asphyxiate at sufficient concentration; the latter is a broad spectrum poison. A 1979 phreatic eruption on the island of Java killed 149 people, most of whom were overcome by poisonous gases.

It is believed the 1883 eruption of Krakatoa, which obliterated most of the volcanic island and created the loudest sound in recorded history, was a phreatic event. Kilauea, in Hawaii, has a long record of phreatic explosions; a 1924 phreatic eruption hurled rocks estimated at eight tons up to a distance of one kilometer. Additional examples are the 1963-65 eruption of Surtsey, the 1965 eruption of Taal Volcano, and the 1982 Mount Tarumae eruption.


Home››Geography››Volcanoes››